
 Formal Language as a Medium for Technical Education
                        Edward S. Lowry  
                           Bedford Mass 
                           eslowry@alum.mit.edu
                           users.rcn.com/eslowry

                                        Revised  September 12, 2013

Abstract 
Thoroughly eliminating extraneous complexity from the expression of precise
knowledge constrains the design of language for expressing it.  As  maximum
expressive simplicity is approached, the fundamental building blocks of
information are constrained toward a permanent optimum design.  Using
information building blocks designed that way can improve technical learning
by:

  - Increasing simplicity and fluency in expression of precise knowledge.
 - Increasing the fraction of precise knowledge expressed in precise form.
 - Providing language for diverse precise subject matter. 
 - Providing durable design of core language semantics.
 - Reducing the need for informal supporting information.
 - Increasing student confidence that precise information will be decipherable.
Students everywhere are now routinely taught how to arrange pieces of
information by educators who are unaware of pieces of information that are
well designed to be easily arranged. That is likely to change – disruptively.
Sound teaching of computer science can guide progress toward expanded use
of precise language.

Understanding basic structures and eliminating contamination and are high priorities in many
technologies. Both have been neglected in language for expressing precise information. In the
context of computer languages, it is possible to design building blocks of information that can be
easily arranged. Little effort has been made to do so despite the fundamental need to work easily
and carefully with precise information. Widely known computer languages are deficient on seven
leading edges compared with a design distributed at IBM 40 years ago. See “Inexcusable
Complexity for 40 years” on the web site[1].  As a result, precise information gets expressed in
over-specialized ways, contaminated with extraneous complexity and poor fluency of expression. 
Non-technical processes contributing to the deficiencies are discussed in “Technical Fluency,
Stifled for Decades” [2] on the web site.

Refinement and implementation of that design by 1982, made it possible for employees at Digital
Equipment Corporation to enter an expression such as

        6 = count every state where population of some city of it > 1000000

1



for computer execution using a general programming, data base, and modeling language.   
The generality, simplicity, and fluency of expression were good enough to make direct learning
using such language a plausible potential across many technical subjects. However, that potential
remains to be evaluated. Anyone who develops or tries to understand technical systems can
benefit from literacy which includes precisely expressed ideas similar to this example.  

Modularity of information building blocks

Building blocks which are easily arranged may be described as having high "modularity".
Modularity can be defined so that switching to use information representations with higher
modularity increases the potential for simplicity in computer programs for processing the
information. 

Bits and bytes have low modularity in that sense but they are preferred as basic information
building blocks inside machines where they have been made fast and reliable at rapidly declining
cost. Computer programs are usually written in a precise language that uses higher modularity
representations which are translated into bits and bytes for machines processing. 

The available evidence [3] supports a conclusion that if we do try to design building blocks with
very high level of modularity, there is a convergence toward a single common design whenever
the subject matter represented is structurally rich. That possibility has been little noticed because
thorough simplification has been neglected. The design converges toward flexible pointer-like
structures with a few additional connections for organizing the building blocks in hierarchies with
lists. That design allows for expressions which freely intermix singular and plural sub-
expressions in a natural language style. The same design is also adequate for simpler subject
matter.

                  Needles representing an age relationship 

As extraneous complexity is eliminated, an orderliness develops which is analogous to
crystallization that develops in a liquid as heat is removed. The convergence on an enduring
optimum is somewhat analogous to convergence on roundness in wheels or verticalness in pillars
except that the richness of the space of applications does not lend itself to mathematical precision.

2



For maximum expressive simplicity all data objects will have a structure called "needles"
(illustrated above) by analogy with pine needles which are pointed and organized in tree
structures. Each needle points from its "parent" in the hierarchy to another object, possibly remote
in the hierarchy or perhaps itself. A needle also has connections to immediate neighbors in the
hierarchy, a possible next "sibling", and a possible first "child" allowing for implied iteration
code and simple plural expressions.

The more important and simpler part of the analysis concludes that all data objects will have the
same structure. The conclusion that such convergence happens has not been well confirmed, but
even a modest attention to simplification would probably do so quickly. 

While the convergence is most easily understood in the context of simplifying computer software,
the conclusions apply broadly to language for simplicity in the expression of precise technical
knowledge. The convergence is independent of the subject matter that is moderately rich  and
makes a "universal core language supporting technical literacy" technically possible. 

Language generality 

Since all functions operate on data structures using a common primitive object, they can be easily
merged into a common language semantics regardless of what subject matter is involved. While
special purpose language features are needed, they can be more easily expressed as superficial
extensions to the more general purpose core language. Unspecialized language reduces barriers to
accessing unfamiliar technical knowledge by reducing need for preliminary language learning.  

Expanded set of stable functions

A stable set of mathematical functions often included in programming languages includes: 

     arithmetic including comparisons
     boolean operations
     set operations
     matrix operations.

They have broad application and stable definitions. The improvements above provide for an
expanded and integrated set of functions which can also have wide application and durability. It is
possible to select groups of widely useful functions which operate on simple structures that form
a language kernel. 

Such groups include: 
 - creation and deletion of objects and relationships 
 - getting objects directly connected to or related to others 
 - arithmetic operations including comparison 
 - test for identicalness 
 - boolean operations 
 - conditional and case expressions 
 - unique selection based on key relationships (array references)
 - subsetting by a selection condition 

3



 - subsetting by beginning or ending conditions 
 - set operations for union, intersection, difference 
 - testing sets for membership, inclusion, or overlap 
 - applying a function to each member of a set 
 - reduction: applying a binary function successively to the members of a set and the preceding

result 
 - transitive closure 
 - sorting sets 
 - first order predicates over sets 
 - matrix operations 
 

Almost all have been incorporated into the KEEP language developed by Digital Equipment
Corporation in the 1980s. Type concepts are useful for providing diagnostics and abbreviations in
the use of such functions. A simple type system would help assure language stability.

Roles for the language
 
Computer processing can enhance the usefulness of the language but computer assistance is not
initially a requirement. Such language can serve to assist students in a variety of their basic needs: 
 - to access readable expositions for many mathematical, scientific, and engineering concepts.
 - to communicate effectively with their teachers and others.
 - to easily articulate precise descriptions of complex ideas, enhancing creativity [4,5] and

problem solving ability.
 - to increase productivity through easily learned technology.
 - to provide a standard of information quality.

Allowing more complete expression of precise information in precise form can relieve a burden
of distilling precise information from various informal representations and integrating it.
Textbooks for technical subject matter express their content using precise mathematical formulas
along with other kinds of less formal representation including natural language statements,
metaphors, diagrams, and examples. The total explicitness provides confidence that mysteries can
be resolved. Automated analysis tools can speed the resolution. 

Open issues

There are many things to be learned about how improved precise language could support
technical education:

 - how to combine formal and informal aspects in presenting knowledge.
 - how and when to introduce the language, perhaps using toy environments.
 - how early students could learn directly from reading such language.
 - how early students could learn to write in such language.
 - how students may vary in their preference for using such language.
 - how might availability of precise knowledge representation affect class discussion.

4



 - how creativity is affected.
 - how formal descriptions may be reused by students after their formal education.
 - how a single language semantics may be adapted to a variety of natural language cultures.
 - how multiple courses with prerequisites can be presented coherently.
 - how automated analysis of prerequisites may help create customized courses quickly.
 - how student need to make long term commitments to specialized learning may be affected.
 - how use of rigorous language might displace traditional material that teaches rigorous thinking.
 
Teaching computer science, -- a way forward?

Considering the use of current computer languages when teaching computer science to young
students helps focus issues. Students and others may ask:
  - Why use language that was obsolescent 40 years earlier? 
  - Why use information building blocks which are arguably “square wheel” unreasonable?
  - Are habits of elitist or obscurantist communication being imposed?
  - Why expand computer science education in high schools using deficient technology.
Resolving those issues is likely to lead to use of precise language which is also suitable for
expressing technical subject matter in a precise but readable form. Education leaders could
develop understanding of how that process is likely to evolve and plan for it. 

 
References 

[1] E. S. Lowry, Inexcusable Complexity for 40 years, users.rcn.com/eslowry/inexcus.pdf .
[2] E. S. Lowry, Technical Fluency, Thwarted for Decades, users.rcn.com/eslowry/stifled.pdf .
[3] E. S. Lowry, Toward Perfect Information Microstructures, users.rcn.com/eslowry/tpim.pdf . 
[4] E. S. Lowry, Physical Rev. pg 616, 1960, and Am. J. of Physics pg 871, 1963 For a brief
description see The Electromagnetic Field in Space-time, users.rcn.com/eslowry/elmag.htm . 
[5] E. S. Lowry, Proc. of   ED-Media96, AACE, June 1996, pg407.(a preliminary version of this
paper) 

Examples

The following give descriptions of some initial content from high school chemistry, accounting
and particle physics. In each case substantial amounts of precise information are presented in a
precise way that was only informally expressed in the original source material. Such descriptions
may be able to participate in computer executions, but not always. 

                   Elementary CHEMISTRY  

<<declare chemistry domain  

declare element list 
  has id(hydrogen, helium, lithium, ... ) 
  has atomic_weight in number 
  has atomic_number in tally 

5

http://users.rcn.com/eslowry/inexcus.pdf
http://users.rcn.com/eslowry/stifled.pdf
http://users.rcn.com/eslowry/tpim.pdf
http://users.rcn.com/eslowry/elmag.htm


declare atom set 
  has element 

declare mass quantities      

declare volume quantities 

declare temperature quantities 

declare molecule set 
  has compound 
  has set atom 

declare compound set 
  has id(carbon_dioxide, water, molecular_oxygen, ozone, ...) 
  holds set component 
  has set portion converse 
  has molecular_weight in number :=sum for its component take 
                        its tally * atomic_weight of its element 
declare component sets 
  has element key 
  has compound converse 
  has tally 
  has fraction in number  
      := its tally * atomic_weight of its element / molecular_weight     
                                                    of its compound 
declare portion set 
  mayhave compound 
  has state_of_matter 
  has mass 
  has molecule_count in tally  
  mayhave temperature 
  mayhave volume                                   
     
declare state_of_matter set 
  has id(solid, liquid, gas) 
     
declare transformation set 
  has set input in portion 
  has set output in portion 
  maybe decomposition := count(its input) = 1 and count(its output) > 1 

    /* gas law  

certify some number satisfies every portion where gas satisfies 
  its pressure * its volume / its temperate = the number

certify decomposition where compound of its input is sulphur_dioxide 
  satisfies mass of its sulphur output ~= mass of its oxygen output >>

6



 

                        ACCOUNTING  

This summarizes some basic accounting concepts. 

<<declare accounting domain 
 
declare business_entity set 
        has name in string key generic 
        holds set ledger in account 

declare account sets 
        has name in string key generic 
        mayhave business_entity 
        is_one_of (asset_acct, liability_acct, capital_acct) 
        is_one_of (curr_asset, fixed_asset) if(asset_acct) 
        is_one_of ( control_acct, subsidiary_ledger ) subtype 
        holds set subsidiary_ledger if(control_acct) 
        holds list acct_period 
 
declare quarter list 
        has ordinal key 
        holds list journal in transaction 
        has set acct_period  

declare acct_period lists 
        has quarter key 
        has account converse 
        has list entry_line := entry_line of transaction of its quarter  
          where account of the acct_period = account of the entry_line 
        has list debit in entry_line := its entry_line where dr  
        has list credit in entry_line := its entry_line where cr 
        has balance in dollar :=  
                        sum (value of its debit) 
                      - sum (value of its credit) 
 

7



declare transaction lists 
        has ordinal key 
        has date 
        has quarter  
        has event in string 
        maybe adjusting 
        maybe closing 
        holds set entry_line which 
                (is_one_of ( dr, cr ) subtype 
                has value in number 
                has account) 
>> 

 

 

         PARTICLE PHYSICS 
 
<< declare particle_physics domain; 
 
declare materiality set 
    has id(matter, anti_matter); 

declare color set 
    has id(lepton, red, green, blue); 

 declare tronity set 
    has id(tron, trino)          /* tron implies tau, muon, or electron
    has set flavor converse; 
 
declare generation set 
    has id(first_generation, second_generation, third_generation) 
    has set flavor converse; 
 
declare flavor set 
    has id( down, up, strange, charm, bottom, top) 
    has generation key := first_generation if down or up else 
                      second_generation if strange or charm else 
                      third_generation 
    has tronity key := tron if down or strange or bottom else     
                                       trino; 

 declare handedness set 
    has id(left, right); 

 declare mass quantities; 

8



 

declare charge values additive 
    has electric in(for integer take it/3) 
    mayhave weak in(for integer take it/2) 
    has r_g in(for integer take it/2) 
    has g_b in(for integer take it/2) 
    has b_r in(for integer take it/2) := -r_g-g_b; 

declare particle set 
    has generation 
    has tronity 
    has color 
    has materiality 
    has mass 
    has flavor := flavor(its generation, its tronity) 
    has handedness 
    isoneof(neutrino, tau, muon, electron, quark) 
              :=     quark if not lepton 
                else neutrino if trino 
                else tau if bottom 
                else muon if strange 
                else electron 
    has charge := create charge with ( 
                    electric: (     0 if neutrino 
                               else -1 if lepton 
                               else 2/3 if trino 
                               else -1/3 if tron ) 
                                  *(1 if matter else -1), 
                    weak: 0 if left and anti_matter  
                                  or right and matter 
                        else 1/2 if tron xor antimatter 
                        else -1/2, 
                    r_g: (    0 if lepton or blue 
                          else 1/2 if red else -1/2) 
                             *(1 if matter else -1), 
                    g_b: (    0 if lepton or red 
                          else 1/2 if green else -1/2) 
                             *(1 if matter else -1)     ); 
>> 

 

9


	 Formal Language as a Medium for Technical Education

